

# Cadmium Alternatives: Zinc-Nickel Electroplating & Repair of Aluminum Coatings

Presented at: SERDP/ESTCP Workshop February 27, 2008

Presented By:
Stephen Gaydos
Technical Fellow – M&P
Boeing – St. Louis
Environmental Assurance

| maintaining the data needed, and c<br>including suggestions for reducing | lection of information is estimated to<br>ompleting and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding an<br>DMB control number. | ion of information. Send comments arters Services, Directorate for Infor | regarding this burden estimate of mation Operations and Reports | or any other aspect of the , 1215 Jefferson Davis | nis collection of information,<br>Highway, Suite 1204, Arlington |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|--|
| 1. REPORT DATE <b>27 FEB 2008</b>                                        |                                                                                                                                                                                   | 2. REPORT TYPE                                                           |                                                                 | 3. DATES COVE<br>00-00-2008                       | RED<br>3 to 00-00-2008                                           |  |
| 4. TITLE AND SUBTITLE                                                    |                                                                                                                                                                                   |                                                                          |                                                                 | 5a. CONTRACT                                      | NUMBER                                                           |  |
|                                                                          | Imium Alternatives: Zinc-Nickel Electroplating & Repair of minum Coatings  5b. GRANT  5c. PROGRA                                                                                  |                                                                          |                                                                 |                                                   | NUMBER                                                           |  |
| Alummum Coaungs                                                          |                                                                                                                                                                                   |                                                                          | 5c. PROGRAM ELEMENT NUMBER                                      |                                                   |                                                                  |  |
| 6. AUTHOR(S)                                                             |                                                                                                                                                                                   |                                                                          |                                                                 | 5d. PROJECT NUMBER                                |                                                                  |  |
|                                                                          |                                                                                                                                                                                   |                                                                          |                                                                 | 5e. TASK NUMBER                                   |                                                                  |  |
|                                                                          |                                                                                                                                                                                   |                                                                          |                                                                 | 5f. WORK UNIT NUMBER                              |                                                                  |  |
|                                                                          | ZATION NAME(S) AND AD 16,St. Louis,MO,632                                                                                                                                         | ` /                                                                      |                                                                 | 8. PERFORMING<br>REPORT NUMB                      | G ORGANIZATION<br>ER                                             |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                  |                                                                                                                                                                                   |                                                                          |                                                                 | 10. SPONSOR/MONITOR'S ACRONYM(S)                  |                                                                  |  |
|                                                                          |                                                                                                                                                                                   |                                                                          |                                                                 | 11. SPONSOR/M<br>NUMBER(S)                        | ONITOR'S REPORT                                                  |  |
| 12. DISTRIBUTION/AVAII Approved for publ                                 | LABILITY STATEMENT ic release; distributi                                                                                                                                         | on unlimited                                                             |                                                                 |                                                   |                                                                  |  |
| _                                                                        | otes<br>and Repair Issues fo<br>Sponsored by SERD                                                                                                                                 |                                                                          | lilitary Aircraft V                                             | Workshop, Fo                                      | ebruary 26-28,                                                   |  |
| 14. ABSTRACT                                                             |                                                                                                                                                                                   |                                                                          |                                                                 |                                                   |                                                                  |  |
| 15. SUBJECT TERMS                                                        |                                                                                                                                                                                   |                                                                          |                                                                 |                                                   |                                                                  |  |
| 16. SECURITY CLASSIFIC                                                   |                                                                                                                                                                                   |                                                                          |                                                                 | 19a. NAME OF<br>RESPONSIBLE PERSON                |                                                                  |  |
| a. REPORT<br>unclassified                                                | b. ABSTRACT<br>unclassified                                                                                                                                                       | c. THIS PAGE<br>unclassified                                             | Same as Report (SAR)                                            | 32                                                | RESPONSIBLE PERSON                                               |  |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188



# Zinc-Nickel Performance Update

#### LHE Alkaline Zn-Ni Plating Development



- Project Goal
  - Develop an LHE (Low Hydrogen Embrittlement) Version of Alkaline Zn-Ni Plating for HSS Aircraft Parts
    - Look at Different Zn-Ni Formulas
    - Remove Brighteners and Other Additives to Create Low Embrittling Plating Process
- Based on Successful Test Results an LHE Alkaline
   Zn-Ni Formula was Selected for Further Development
  - Identified as IZ-C17 (contains 13 to 17% Ni)
  - Has Good Corrosion Performance
  - Passes Hydrogen Embrittlement and Re-Embrittlement
     Testing with ASTM F 519 Ty 1a.1 and 2a Test Specimens
    - Re-Embrittlement Test Specimens Exposed to Distilled Water and 3.5% Salt Water

## IZ-C17 Zn-Ni Plating Tank



• 60 L Plating Tank Installed in Laboratory





#### IZ-C17 Zn-Ni Plating Process



#### **IZ-C17 Zn-Ni Process**

- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17 Zn-Ni Plate
- Rinse
- Embrittlement Bake
- Rinse
- Chromate Conversion Coat
- Rinse

Zn-Ni Process is Easier and Less
Hazardous Than Cadmium Plating

#### **Cadmium Process**

- Solvent Clean
- Grit Blast
- Water Rinse
- Cadmium Plate (Cd + CN<sup>-</sup>)
- Rinse
- Chromic Acid Neutralize (Cr<sup>+6</sup>)
- Rinse
- Embrittlement Bake
- Nitric Acid Activate (HNO<sub>3</sub>)
- Rinse
- Chromate Conversion Coat
- Rinse

#### **IZ-C17 Zinc-Nickel Corrosion Tests**



- LHE Cadmium Plating (Top) and IZ-C17 Zinc-Nickel Plating (Bottom)
  - Scribed ASTM B 117 Salt
     Spray Test after 1000 Hours
     Exposure
    - No Red Rust in Scribed Areas



LHE Cadmium Plating – 1000 Hrs. ASTM B 117 Salt Spray Exposure



LHE Zinc-Nickel Plating – 1000 Hrs. ASTM B 117 Salt Spray Exposure

#### IZ-C17 Zn-Ni Adhesion and Thickness



• IZ-C17 Has Good Adhesion and Uniform Thickness



**Sample # 3061** 

Thickness = 0.45 + - 0.02

**DAC Adhesion = Pass** 

**Sample # 3062** 

Thickness = 0.47 + /- 0.02

**DAC Adhesion = Pass** 

Sample # 3063

Thickness = 0.44 + /- 0.04

Mil Spec Adhesion = **Pass** 

LHE IZ-C17 Zinc-Nickel on Steel

#### **JCAT Throwing Power Test**





Hull Cell Test Panel Inserted In Plastic Tube



Tube with Hull Cell Test Panel Placed in Zn-Ni Plating Bath

# IZ-C17 Type 2a HE Testing





# **IZ-C17 Fatigue Test Specimens**





#### 2007 Testing of IZ-C17 Zn-Ni Plating



- Numerous Qualification Tests with IZ-C17 LHE Zn-Ni Plating Completed in 2007 – Report Issued to Air Force
  - Hydrogen Embrittlement (1a.1, 1a.2, 2a)
  - Adhesion and Metallurgy
  - Corrosion Testing (Salt Spray and Galvanic)
  - Fluid Immersion (ASTM F 483)
  - Lubricity (Fasteners)
  - Strippability
    - Ammonium Nitrate (pH 10)
    - Dilute Hydrochloric Acid
  - Throwing Power (JCAT Method)
  - Fatigue

#### Zinc-Nickel vs. Cadmium Score Sheet



| Properties                    | LHE Cadmium | IZ-C17 LHE Zinc-Nickel |  |
|-------------------------------|-------------|------------------------|--|
| 0                             | 4000 h      | 4000 l                 |  |
| Corrosion - Salt Spray        | 1000 hours  | + 1000 hours           |  |
| Hydrogen Embrittlement (1a.1) | Pass        | Pass                   |  |
| Hydrogen Re-Embrittlement -   |             |                        |  |
| Water                         | Marginal    | Pass                   |  |
| Hydrogen Re-Embrittlement -   |             |                        |  |
| Salt Water                    | Fail        | Pass                   |  |
| Throwing Power                | Poor        | Good                   |  |
| Fatigue                       | Good        | Good                   |  |
| Lubricity                     | Good        | Needs Lubricant        |  |
| Electrical Properties         | Good        | TBD                    |  |
| Fluid Immersion               | Good        | Good                   |  |
| Strippability                 | Good        | Good*                  |  |

<sup>\*</sup> Dilute HCI Solution - Strips Zn-Ni in 10 seconds and is Non-Embrittling

#### Evaluation of IZ-C17+



- Dipsol has Improved the LHE Zinc-Nickel Plating Bath with Better Stability and Longer Plating Bath Life
  - IZ-C17+
- IZ-C17+ is Similar to IZ-C17 But Contains Better Stabilizers and Bath Life Extenders
- Preliminary Tests Have Shown that IZ-C17+ is Equivalent in Performance to IZ-C17
  - Tests Performed with Tri-Chrome Conversion Coating
- SBIR Project to to Implement LHE Zn-Ni Plating at Air Force ALC
  - Boeing Partnered with ES3
  - IZ-C17 or IZ-C17+ Will Be Used for This Application

#### IZ-C17+ Zn-Ni Plating Process



#### IZ-C17+ Zn-Ni Process

- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17+ Zn-Ni Plate
- Rinse
- TriCr Conversion Coat
- Rinse
- Embrittlement Bake

TriCr CC on Zinc-Nickel Is Not Affected by the 375°F Baking Temperature

#### **IZ-C17 Zn-Ni Process**

- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17 Zn-Ni Plate
- Rinse
- Embrittlement Bake
- Rinse
- Chromate Conversion Coat
- Rinse

IZ-C17+ with TriCr CC Process is
Easier and Less Hazardous Than
IZ-C17 with HexCr CC

#### 2008 Tasks to Implement Zn-Ni



- Issue DPS for LHE Zn-Ni Plating
- Set-Up Larger Tank (200 to 400 Gallon) for Production Process Control Testing
- Continue to Evaluate Tri-Chrome Conversion Coating on Zn-Ni
- Develop an Accelerated Hydrogen Embrittlement Test
- Perform Hydrogen Re-Embrittlement Tests with Maintenance Fluids (Cleaners and Paint Strippers)
- Perform Additional Fatigue Tests
- Evaluate Performance of Aircraft Paint Systems on Zn-Ni
- Develop Touch-Up Brush Plating to Repair Zn-Ni
- Evaluate Electrical Bonding and Grounding Performance
- Identify Lubricant System for Zn-Ni Plated Fasteners



# Repair of Aluminum Coatings Update

# **Current IVD AI Repair Methods**



- IVD Aluminum Repair Methods on HS Steel Alloys
  - Condition 1: Bare IVD AI on Steel
    - Touch-Up with Brush Cd Plating
  - Condition 2: Painted IVD on Steel
    - Remove rust and scratches
    - Apply two coats epoxy primer
    - Apply one coat sprayable or brushable sealant
    - Apply two coats polyurethane top coat
- IVD Al Repairs Shall Not Exceed 5% of Total Part Area or 0.5 in<sup>2</sup> per Individual Area
  - Repairs That Exceed Limits
    - IVD Al Shall Be Stripped and Reapplied

## **Alternative Al Coatings and Repairs**



- IVD Aluminum Coating Alternatives Being Developed or Implemented for High Strength Steel
  - Sputter Aluminum
  - Electroplated Aluminum Alumiplate
  - APCVD Aluminum
- An Environment Friendly Repair Method is Needed for These Environment Friendly Coating Processes
  - Sn-Zn Brush Plating
  - Zn-Ni Brush Plating
  - SermeTel 249/273
  - Cold Spray Aluminum

# **Brush Plating**



- Potential Candidates Considered
  - LDC 5030 Sn-Zn and SIFCO 4018 Zn-Ni
- LDC 5030 Sn-Zn Selected Because of No-Bake Hydrogen Embrittlement Performance
- Aluminum Surface Preparation for Brush Plate
  - Bare Aluminum Poor Adhesion
  - Zincate Brush Treat Inconsistent Results
  - Nickel Strike Good Adhesion
- Corrosion and Adhesion Tests Performed with Brush Sn-Zn and Cadmium Applied to Damaged IVD Aluminum Steel Test Panels

# Repair Test Specimens







Adhesion Test Specimen

4130 Steel with IVD Aluminum Applied

#### **Brush Tin-Zinc on IVD Al**



# **Brush Plating Properties**



- Adhesion of LDC 5030 Brush Sn-Zn on IVD Aluminum is Good with the Nickel Strike
- Fatigue Test Results for Brush Sn-Zn are Similar to Brush Cd Plate



#### **SermeTel 249/273**



- Repair Specimens Prepared for JG-PP JTP Phase I
  - SermeTel 249/273 Applied to Bare Steel for Hydrogen Embrittlement and Adhesion Testing in Phase I
    - Failed Adhesion but Passed HE Tests
- Additional Type 1a.1, 1x4 and 4x6 Samples Prepared and Shipped to CTC for Phase II Testing
  - No Results to Report



# **Cold Spray Aluminum**





- Cold Spray Particles Impacting on Substrate Do Not Melt
- Process Adaptable to Wide Variety of Operating Conditions (Supply Gases, Gas Temperature, Powders, Feeder Designs, Nozzle Designs, Manual or Robotic Application)

# **Cold Spray Aluminum**



- Need Robust and Easy to Operate Portable Cold Spray Equipment For Repair of Aluminum Coatings
- Equipment and Processes Available from Several Different Companies
  - Dymet
  - Centerline
  - K-Tech
  - ARL
  - Innovati
  - Delphi
  - ASB
    - CGT
  - Etc.

# **Dymet**





- Steel Test Samples Sent to Obinsk Center for Powder Spray (OCPS) for Application of Cold Spray Al with Dymet Equipment
- Coating Appearance was Acceptable But System Did Not Seem to be Operator Friendly

# **Dymet Results**



- Test Results for Steel Samples Received from OCPS with Dymet Cold Spray Al Coatings
  - Good Adhesion
  - Good Corrosion Performance (1000 Hr B 117 Scribed No Rust)
  - Process is Non-Embrittling to HS Steel
  - Thickness 1.5 to 2 mil



Passed Bend to Break Adhesion Tests

#### **Centerline SST**



 Centerline SST Unit is Improved Version of Dymet Equipment

#### MEET YOUR NEW WINGMAN...



# SST Results for Cold Sprayed Al



- Adhesion Testing Carried Out on Steel and IVD Aluminum
  - Passed Tape Adhesion Test
  - Passed Glass Bead Burnish Adhesion Test at 60 psig
    - This is the Adhesion Test Used for IVD Al
  - Some Flaking on Bend-to-Break Test
- Corrosion Test Results Carried Out on Damaged IVD Aluminum Steel Panels
  - Exceeded MIL-DTL-83488 Requirement

## **Corrosion Test of SST Cold Spray Al**



# 117 1008 Hours

 $\mathbf{m}$ 

ASTM

Cold Sprayed Al Applied Robotically









0 Hours

1008 Hours

# **Cold Spray Test Plans**



- Purchase Centerline SST Portable Unit
  - Develop Process to Repair Damaged Aluminum Coatings
    - Thickness
    - Adhesion
    - Corrosion
    - Fatigue
    - Hydrogen Embrittlement
- Continue to Work with Other Cold Spray Vendors and Laboratories to Repair
  - Damaged Alclad Aircraft Skins
  - Damaged Aluminum Aircraft Parts

# **Questions?**



